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This appendix is organized as follows. In Appendix D we provide proofs of additional

results omitted from the main text. In Appendix E we provide further details on the knife-

edge case c = 1. In Appendix F we show that the expositional device of assuming that the

coefficients in the receivers’ strategy sum to one is without loss of generality.
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D Omitted proofs

In this appendix we provide proofs of results omitted from the main text. We first state and prove two
supplementary lemmas used in the proof of Proposition 5 in the main text. We then provide proofs of
Remark 1 and Remark 2 from the main text.

D.1 Supplementary lemmas

Supplementary Lemma 1. The total derivative of the receivers’ equilibrium loss l∗ with respect to αx is
strictly positive if and only if

F (k∗) := k∗4 − 2k∗3 + 2ck∗ − c2 > 0 (D1)

Proof. Recall that l∗ = l(δ∗;αx) where

l(δ;αx) =
(1− λ)

(1− δ)2(1− λ)αx + αz
(D2)

From this we obtain
dl∗

dαx
> 0 ⇔ (1− δ∗)− 2αx

dδ∗

dαx
< 0 (D3)

Equivalently, if and only if
dδ∗

dαx
>

1

2αx
(1− δ∗) > 0 (D4)

Now recall that in equilibrium the sender’s manipulation depends on αx only via the receivers’ response
coefficient, δ∗(αx) = δ(k∗(αx)), so that

dδ∗

dαx
= δ′(k∗)

dk∗

dαx
(D5)

So we can write condition (D4) as

δ′(k∗)
dk∗

dαx
>

1

2αx
(1− δ∗) > 0 (D6)

Applying the implicit function theorem to the equilibrium condition (A2) from the main text we have

dk∗

dαx
=

αz

(1−λ)αx

k∗

αx

αz

(1−λ)αx
−R′(k∗) > 0 (D7)

where R(k) is defined in (A2) in the main text. Plugging this into (D6) and simplifying we get the equivalent
condition

αz
(1− λ)αx

(
δ′(k∗)k∗ − 1

2
(1− δ∗)

)
> −1

2
(1− δ∗)R′(k∗) (D8)

Now observe from (A7) that

δ′(k)k − 1

2
(1− δ) =

1

2

(
1

c− k2
)2 (

k3 − 3ck2 + 3ck − c2
)

(D9)

and that using the formula for R′(k) given in (A3) above we can calculate that

1

2
(1− δ)R′(k) =

1

2

(
1

c− k2
)2

R(k)
1

1− kP (k) (D10)

where P (k) is also defined in (A3) above. Plugging these calculations back into (D8) gives

αz
(1− λ)αx

(
1

2

(
1

c− k∗2
)2 (

k∗3 − 3ck∗2 + 3ck∗ − c2
)
)
> −1

2

(
1

c− k∗2
)2

R(k∗)
1

1− k∗P (k∗) (D11)
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Canceling common terms gives the condition

αz
(1− λ)αx

(
k∗3 − 3ck∗2 + 3ck∗ − c2

)
> −R(k∗)

1

1− k∗P (k∗) (D12)

Using the equilibrium condition L(k∗) = R(k∗) from (A2) and α = (1− λ)αx/αz gives

αz
(1− λ)αx

(
k∗3 − 3ck∗2 + 3ck∗ − c2

)
> − αz

(1− λ)αx

k∗

1− k∗P (k∗) (D13)

Using the definition of P (k) and canceling more common terms gives the condition

k∗4 − 2k∗3 + 2ck∗ − c2 > 0 (D14)

Supplementary Lemma 2. Define

F (k∗) := k∗4 − 2k∗3 + 2ck∗ − c2 (D15)

(i) If c > 1, then F (k∗) < 0;

(ii) If c < 1, there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k ∈ (k, k) and F (k) ≤ 0
otherwise. Moreover, the cutoffs are on either side of c so that 0 < k < c < k < 1.

Proof. Write F (k) = J(k; c)−G(k) where J(k; c) := 2ck− c2 and G(k) := 2k3 − k4. Observe that G(0) = 0,
G(1) = 1, G(k) < k for all k; G′(k) = 2k2(3−2k) ≥ 0 with G′(0) = 0 and G′(1) = 2; and G′′(k) = 12k(1−k) ≥
0 so that G′(k) ≤ G′(1) = 2 for all k. Further observe that J(0; c) = −c2 < 0, J(1; c) = 2c − c2 ≤ 1 (with
equality if c = 1) and J ′(k; c) = 2c > 0 for all k so that J(k; c) ≤ J(1; c) = 2c − c2 ≤ 1 for all k, c. These
imply F (0) = J(0; c)−G(0) = −c2 < 0 and F (1) = J(1; c)−G(1) = 2c− c2 − 1 ≤ 0 (with equality if c = 1);
F ′(k) = J ′(k; c)−G′(k) = 2c−G′(k) and F ′′(k) = −G′′(k) ≤ 0. Since G′(k) ≤ 2 we have

F ′(k) = J ′(k; c)−G′(k) = 2c−G′(k) ≥ 2c− 2 = 2(c− 1) (D16)

For part (i) c > 1. Then F ′(k) ≥ 2(c − 1) > 0 so F (k) is strictly increasing from F (0) = −c2 < 0 to
F (1) = 2c− c2 − 1 < 0 so that F (k) < 0 for all k.

For part (ii) c < 1. Then since G′(k) is monotone increasing from G′(0) = 0 to G′(1) = 2 there is a
unique critical point k̃ such that

F ′(k̃) = 0 ⇔ 2c = G′(k̃) (D17)

Since F ′′(k) ≤ 0, this critical point maximizes F (k) hence

F (k) ≤ max
k∈[0,1]

F (k) = F (k̃) (D18)

and observe that if we take k = c < 1 (which is feasible since here c < 1) then we have

F (c) = J(c; c)−G(c) = 2c2 − c2 −G(c) = c2 − 2c3 + c4 = c2(1− 2c+ c2) > 0 (D19)

so that indeed
F (k̃) ≥ F (c) > 0 (D20)

Hence for c < 1 there exist k such that F (k) > 0. More precisely, the function F (k) increases from F (0) =
−c2 < 0 to a lower cutoff k ∈ (0, k̃) defined by F (k) = 0. The function F (k) keeps increasing until it reaches
the critical point k̃ at which F ′(k̃) = 0 and F (k̃) > 0. From there F (k) decreases, crossing zero again at a
higher cutoff k ∈ (k̃, 1) defined by F (k) = 0 and keeps decreasing until F (1) = 2c− c2 − 1 < 0 (since c < 1).

So for c < 1 there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k ∈ (k, k) and F (k) ≤ 0
otherwise. For c < 1 these critical points are defined by the roots of F (k; c) = 0. Observe that since F (c) > 0
yet k is the first k for which F (k) = 0 it must be the case that k < c. Likewise since F (k) = 0 it must also
be the case that k > c. In short, the cutoffs are on either side of c so that 0 < k < c < k < 1.
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D.2 Additional remarks

Proof of Remark 1.

From Proposition 1 in the main text, we know that k∗ < min(c, 1). As α→∞, L(k) in (A2) approaches zero.
To make the equilibrium condition hold, R(k) in (A2) needs to approach zero too. If c < 1, this condition is
achieved by k → c. If c > 1, this condition is achieved by k → 1. The limiting results of δ∗ are implied by
Lemma 2 in the main text when k∗ → min(c, 1). �

Proof of Remark 2.

Suppose that λ < 0 and c < c∗nm(α) so that k∗ < k∗nm. We can rewrite the condition (C6) for the sender’s
manipulation to backfire as

k∗2

c− k∗
(1− k∗)2
k∗nm − k

< 1− λ(k∗nm + k∗). (D21)

Using the equilibrium condition (A2) and the sender’s best response (22), we have:

k∗2

c− k∗ = α
c(1− k∗)k∗
(c− k∗2)2

= αδ∗
(

1 +
k∗

1− k∗ δ
∗
)
. (D22)

As c→ 0, the RHS of (D21) converges to

lim
c→0

(
1− λ(k∗nm + k∗)

)
= 1− λ α

α+ 1
(D23)

since k∗ → 0 as c→ 0. Recall that as c→ 0, δ∗ → 1, the LHS of (D21) converges to

lim
c→0

(
k∗2

c− k∗
(1− k∗)2
k∗nm − k

)
= α

1
α
α+1

= α+ 1. (D24)

Therefore, the condition (D21) must hold when c is small enough if

α+ 1 < 1− λ α

α+ 1
. (D25)

Since α = (1− λ)αx/αz, the inequality above can be rewritten as

αx + αz < (αx − αz)λ. (D26)

Given that λ < 0, the necessary condition for the inequality above to hold is αx < αz. When it is the case,
the inequality above is equivalent to

λ < −αx + αz
αz − αx

< −1. (D27)

In sum, when αx < αz, for each λ satisfying the inequality (D27), there must exist a cutoff c∗ such that for
all c < c∗, the condition (D21) for the sender’s manipulation to backfire holds. Finally, the cutoff c∗ must be
lower than c∗nm(α) so that c < c∗ is sufficient for k∗ < k∗nm. �
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E Knife-edge case c = 1

In this appendix we provide more details on the knife-edge case where the costs of manipulation are c = 1
exactly. We first explain why this case needs to be handled separately (when the relative precision α is
sufficiently high) and explain how the equilibrium is determined in this case. We then explain the comparative
statics of the equilibrium local to c = 1 and how this can cause the equilibrium amount of manipulation δ∗ to
jump discretely at c = 1. We then give some intuition for large changes in δ∗ near c = 1 and how to interpret
this specific parameter value.

Preliminaries. There is no issue with c = 1 if the relative precision α ≤ 4. The issues with c = 1 arise
only if α > 4. To see this, first recall from Lemma 1 that if α > 1 the receivers’ best response k(δ;α) is

increasing in δ on the interval [0, δ̂(α)] and obtains its maximum at δ = δ̂(α) = 1 − 1/
√
α ∈ (0, 1). At the

maximum, the receivers’ best response takes on the value k(δ̂(α);α) =
√
α/2. Hence for α > 4 the maximum

value exceeds 1. Moreover, by continuity of the best response in δ if α > 4 there is an interval of δ such that
k(δ;α) > 1. The boundaries of this interval (δ(α), δ(α)) are given by the roots of k(δ;α) = 1, which work
out to be

δ(α) , δ(α) =
1

2

(
1±

√
1− (4/α)

)
, α ≥ 4 (E1)

Observe that this interval is symmetric and centred on 1/2 with a width of

δ(α)− δ(α) =
√

1− (4/α) ≥ 0, α ≥ 4 (E2)

If α = 4, we have δ(4) = δ(4) = 1/2 but as α increases the width of the interval (δ(α), δ(α)) expands around
1/2 with the boundaries δ(α) → 0+ and δ(α) → 1− as α → ∞. Now recall from Proposition 1 that only
k ∈ [0,min(c, 1)] and δ ∈ [0, 1] are candidates for an equilibrium. So if α > 4 then none of the values of
δ ∈ (δ(α), δ(α)) are candidates for an equilibrium.

General case, c 6= 1. Now consider the sender’s best response δ(k; c) parameterized by c 6= 1 and suppose
α > 4. When c 6= 1, the sender’s objective always depends on δ over the entire support k ∈ [0,min(c, 1)]. As
proved in Proposition 1, there is a unique intersection between the sender’s and the receivers’ best responses.
As illustrated below, if c < 1 the sender’s best response δ(k; c) must lie above δ(k; 1) = k/(1 + k) and hence
the equilibrium point k∗, δ∗ must be on the “upper branch” of k(δ;α) where δ∗ > δ(α). But for the same
value of α and instead c > 1 the equilibrium point k∗, δ∗ must be on the “lower branch” of k(δ;α) where
δ∗ < δ(α) because the sender’s best response δ(k; c) lies below δ(k; 1) = k/(1 + k).

Knife-edge case, c = 1. Recall from (38) that the sender’s objective can be written

V (δ, k) =
1

αz
(B(δ, k)− C(δ)) +

1

αx
k2 (E3)

with benefit B(δ, k) = (kδ + 1− k)2 and cost of manipulation C(δ) = cδ2. When c = 1 exactly the relevant
part of the sender’s objective becomes

B(δ, k)− C(δ) = (kδ + 1− k)2 − δ2 (E4)

When k 6= 1, the sender’s best response is δ(k; 1) = k/(1 + k), which is increasing in k and approaches 1/2 as
k → 1. But when k = 1, the sender’s objective is independent of δ and in turn the sender is indifferent to δ.
Any δ ∈ [0, 1] is a best response to k = 1. In this case, the equilibrium is entirely determined by the receivers’
best response. If α < 4, the receivers’ best response k(δ;α) < 1 so that k∗ = 1 is never an equilibrium. If
α = 4 exactly there is a unique equilibrium with k∗ = 1 and δ∗ = 1/2. If α > 4 then there are two equilibria
corresponding to the two roots of k(δ;α) = 1, namely (i) k∗ = 1 and δ∗ = δ(α) and (ii) k∗ = 1 and δ∗ = δ(α).
That is, there is a “low manipulation” equilibrium and a “high manipulation” equilibrium and in both of
these equilibria the receivers are maximally responsive to their signals.

Importantly, this equilibrium configuration is negligible in the sense that for any c arbitrarily close to 1
there is a unique (linear) equilibrium for any α > 0.
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Discontinuity at c = 1 and jump in the amount of manipulation δ∗

The left panel shows the receivers’ best response k(δ;α) for α < 1, α = 4 and α > 4 (blue) and the sender’s best response δ(k; c)
for c = 1 − ε, c = 1, and c = 1 + ε (red). For α > 4, in the limit as c → 1− the equilibrium is at k∗ = 1, δ∗ = δ(α) but in
the limit as c → 1+ the equilibrium is at k∗ = 1, δ∗ = δ(α). For α > 4 and c = 1 both of these are equilibria because for this
knife-edge special case the sender is indifferent between δ(α) and δ(α). The right panel shows the equilibrium manipulation δ∗

as a function of c for α < 1, α = 4 and α > 4. For α ≤ 4, the manipulation δ∗ is continuous in c. But for α > 4 the manipulation
jumps discontinuously at c = 1. In the limit as α → ∞ the boundaries δ(α) → 0+ and δ(α) → 1+ so that the manipulation
jumps by the maximum possible amount, from δ∗ = 0 if c < 1 to δ∗ = 1 if c > 1.

Intuition for large changes in manipulation near c = 1. Now consider the sensitivity of the equilibrium
amount of manipulation to changes in c near c = 1. The main case of interest is where α→∞ so that there
is no fundamental uncertainty and, absent manipulation, the receivers would be very responsive to their
signals. In this case, k → min(c, 1). First, suppose that c > 1 so that k → 1. Then the relevant part of the
sender’s objective from (E3) simplifies to

B(δ, 1)− C(δ) = (1− c)δ2 (E5)

so that for any c > 1 the sender will choose δ = 0. Next, suppose instead that c < 1 so that k → c. In this
case the relevant part of the sender’s objective simplifies to

B(δ, c)− C(δ) = −c(1− c)δ2 + 2c(1− c)δ + (1− c)2 (E6)

so that for any c < 1 the sender will choose δ = 1. In short, as α → ∞, the sender’s manipulation is a step
function in c, with δ = 1 for all c < 1 and δ = 0 for all c > 1.

What is the meaning of c = 1? So given that the amount of manipulation can be extremely sensitive to

c near c = 1, what does c = 1 mean? Recall that in the sender’s objective (5) the gross benefit
∫ 1

0
(ai− θ)2 di

has a coefficient normalized to 1. If instead we had written the objective with b
∫ 1

0
(ai− θ)2 di for some b > 0

then throughout the analysis the relevant parameter would be the cost/benefit ratio c/b and the critical
point would be where the cost/benefit ratio is c/b = 1. In this parameterization, the sender’s equilibrium
manipulation is extremely sensitive to changes in either c or b in the vicinity of c/b = 1. With α high and
costs and benefits evenly poised, a small decrease in b or small increase in c would lead to a large reduction
in manipulation.
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F Coefficients sum to one

In this appendix we show that writing the receivers’ linear strategy as a(xi, z) = kxi+(1−k)z is without loss
of generality. We show this with the more general version of our model that allows for strategic interactions
among receivers, i.e., with the receivers’ quadratic loss defined in (34).

Suppose that the receivers’ linear strategy is

ai = β0 + β1xi + β2z

for some coefficients β0, β1, β2. We will show that in any linear equilibrium β0 = 0 and β1 + β2 = 1. With
this strategy, the aggregate A is

A = β0 + β1y + β2z

The sender’s problem is then to choose y to maximize
∫ 1

0

(ai − θ)2 di− c(y − θ)2 = (β0 + β1xi + β2z − θ)2 +
1

αx
β2
1 − c(y − θ)2

The solution to this problem is
y = γ0 + γ1θ + γ2z

where

γ0 =
β0β1
c− β2

1

(F1)

γ1 =
c− β1
c− β2

1

(F2)

γ2 =
β1β2
c− β2

1

(F3)

But if the sender has the strategy y = γ0 + γ1θ + γ2z, the receivers’ posterior expectation of θ is

E[θ |xi, z] =
γ1αx

γ21αx + αz

(
1

γ1
(xi − γ2z)−

γ0
γ1

)
+

αz
γ21αx + αz

z

=
γ1αx

γ21αx + αz
xi +

αz − γ1αxγ2
γ21αx + αz

z − γ1αx
γ21αx + αz

γ0

And the equilibrium strategy of an individual receiver then satisfies

ai = λE[A |xi, z] + (1− λ)E[θ |xi, z]
= λβ1E[y |xi, z] + (1− λ)E[θ |xi, z] + λβ2z + λβ0

= (λβ1γ1 + (1− λ))E[θ |xi, z] + λ(β1γ2 + β2)z + λ(β1γ0 + β0)

Matching coefficients with ai = β0 + β1xi + β2z we then have

β0 = −(λβ1γ1 + (1− λ))
γ1αx

γ21αx + αz
γ0 + λ(β1γ0 + β0) (F4)

β1 = (λβ1γ1 + (1− λ))
γ1αx

γ21αx + αz
(F5)

β2 = (λβ1γ1 + (1− λ))
αz − γ1αxγ2
γ21αx + αz

+ λ(β1γ1 + β2) (F6)

Now observe that equations (F1) and (F4) together imply that the intercepts are β0 = γ0 = 0. Now observe
from (F2)-(F3) and (F5)-(F6) that γ1 + γ2 = 1 implies β1 + β2 = 1 and vice-versa. So in one equilibrium the
receivers’ strategy takes the form ai = kxi + (1− k)z where k = β1 and the sender’s strategy takes the form
y = (1− δ)θ + δz where δ = γ2. Hence from (F3) and (F5) we can write

δ =
k − k2
c− k2 , k =

(1− δ)α
(1− δ)2α+ 1

where α := (1− λ)αx/αz. These are the same as the best response formulas equations (13) and (18) in the
main text and from Proposition 1 we know that there is a unique pair k∗, δ∗ satisfying these conditions.
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